

OpenAirInterface: An Open LTE Network in a PC

N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nussbaum, R. Ghaddab

EURECOM, Mobile Communication Department

Toward Open 4G/5G Ecosystem

 Cellular systems are expected to converge from a proprietary and expensive HW/SW platforms towards an open SW platforms over commodity HW

- Happened already for cloud service
- Happened already for handsets
- Happened already for 2G

OpenAirInterface in a Nutshell

- Open-source (hardware and software) wireless technology platforms for deployment of mock network with high level of realism
 - Soft modem: SDR architecture and full GPP
 - System approach with high level of realism
 - Part of FIRE facility: remote access

Current focus

- > 3GPP LTE (unicast and multicast), and a subset of LTE-A features
- > IEEE 802.11p and 802.21
- LTE meshing extension and relay node

OpenAirInterface Objectives

- Open and integrated development environment under the control of the experimenters
- Flexibility to architect, instantiate, and configure the network components (at the edge, core, or cloud)
- Fully software-based network functions spanning all the layers
- Rapid prototyping of 3GPP compliant and non-compliant usecases
- Instrumental in the development of the key 5G technologies
 - Examples :M2M/IoT, SDN, cloud- RAN and massive MIMO

OAI Wireless technology Platforms

- C implementation under realtime Linux optimized for x86
- Rich R&D environment
 - Aeroflex-Geisler LEON/GRLIB,
 - RTAI/RE-PRREMPT/LOW LATENCY Kernel
 - Linux and GNU
- Development and integration methodology
 - Tight interaction between the system emulation and soft modem.

Openairinterface Software Architecture

OpenAirInterface Software platforms

Supported tools

- Configuration templates
- Wireshark interface (L2 and above),
- Pprotocol analyzer
- Timing measurement and profiler
- Soft Scope and performance monitoring

Supported Physical Layer features

- LTE release 8.6 compliant, with a subset of release 10;
- FDD and TDD configurations in 5, 10, and 20 MHz bandwidth;
- Transmission mode: 1 (SISO), and 2, 4, 5, and 6 (MIMO 2x2);
- CQI/PMI reporting;
- All DL channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH;
- All UL channels are supported: PRACH, PUSCH, PUCCH, SRS, DRS;
- HARQ support (UL and DL);
- Highly optimized base band processing (including turbo decoder).

Supported Access Layer Features

- LTE release 8.6 compliant and a subset of release 10 features;
- Implements the MAC, RLC, PDCP and RRC layers
- Protocol service for Rel10 eMBMS (MCH, MCCH, MTCH)
- Priority-based MAC scheduler with dynamic MCS selection
- Fully reconfigurable protocol stack
- Integrity check and encryption using the AES algorithm
- Support of RRC measurement with measurement gap
- Standard S1AP and GTP-U interfaces to the Core Network
- IPv4 and IPv6 support

Supported EPC Features

- MME, SGW, PGW and HSS implementations.
- NAS integrity and encryption using the AES algorithm;
- UE procedures handling
 - attach, authentication, service access, radio bearer establishment;
- Transparent access to the IP network
 - Configurable access point name, IP range, DNS and E-RAB QoS;
- IPv4 and IPv6 support

Hardware Targets for Openair4G

ExpressMIMO2

- Designed and maintained by EURECOM
- Used by many academia/industrial partners
- 1.5/5/10/20 MHz, FDD/TDD (MIMO)

USRP B210

- Commercial Ettus/National Instruments board
- Supported by OAI software platform

USRP X300

Coming soon

OpenAirInterface Hardware Platforms

ExpressMIMO2 FPGA design architecture

 Use an AHB bus to interface a Leon3 processor with the other blocks (data transfer, memory management, ...)

Built-in System Emulator and Tools

Scenario Scenario Dispatcher Results Console Result Gen

Input:

- Description of application scenario
- Initialization and configuration of all the blocks

Execution:

- PHY procedures, L2 protocols, traffic generator
- PHY abstraction, channel model, and mobility model
- Emulation medium: shared memory

Output:

- Execution logs
- System/protocol operation
- Key performance indicators: latency, jitter, throughput/goodput

DEMO SETUP

Demo Setup

- Usage of commodity hardware to run LTE network
- Reconfigurability, support of various use cases
- Flexibility in deployment

Various Network Experimentation setup

- OAI UE ↔ OAI eNB + OAI EPC
- OAI UE ← OAI eNB + Commercial EPC
- OAI UE ←→ Commercial eNB + OAI EPC
- OAI UE ←→ Commercial eNB + Commercial EPC
- Commercial UE ← Commercial eNB + OAI EPC
- Commercial UE ← OAI eNB + Commercial EPC
- Commercial UE ← OAI eNB + OAI EPC

Example use case

- Public safety networks
- Small cells
- Relay node
- Test/sniffer equipment
- Measurement Compiegne and field trials
- Network and/or application/service performance test

Research avenues

5G evolution path of OAI soft-modem supported by EU/industrial projects

- Machine type communication and IoT
- Cloudification of radio networks (RAN+EPC)
- Massive MIMO, and COMP
- Cognitive networking
- Software-defined networking and network function virtualization support
- Support of machine type communications
- Mesh extension in support of multihop operation
- Cooperative transmission and MAC
- Caching strategy at the eNB or S/P-GW
- Cooperative eMBMS, proximity networking
- Scalable system experimentation and evaluation
- RRM policies, handover logic and performance, MIMO performance, traffic scheduling policy

Conclusion

OpenAirInterface

- Suitably flexible platform for an open cellular ecosystem both for 4G experimentation as well as for 5G research
- Open-source reference software implementation of 3GPP-compliant LTE system and a subset of LTE-A features
- Real-time indoor/outdoor experimentation and demonstration

 Promote the development, distribution and adoption of the opensource hardware and software open cellular ecosystem

Contacts Information

URL:

- www.openairinterface.org
- https://twiki.eurecom.fr/twiki/bin/view/OpenAirInterface

Partnership and collaboration :

openair_admin@eurecom.fr

Technical Support:

openair_tech@eurecom.fr

Developer support :

- openair4G-devel@eurecom.fr
- To subscribe, send and email to majordomo@eurecom.fr with the content "subscribe openair4G-devel"

EURECOM MEMBERS

